Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Public Health ; 23(1): 830, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2316947

ABSTRACT

BACKGROUND: The first case of COVID-19 in South Africa was reported in March 2020 and the country has since recorded over 3.6 million laboratory-confirmed cases and 100 000 deaths as of March 2022. Transmission and infection of SARS-CoV-2 virus and deaths in general due to COVID-19 have been shown to be spatially associated but spatial patterns in in-hospital deaths have not fully been investigated in South Africa. This study uses national COVID-19 hospitalization data to investigate the spatial effects on hospital deaths after adjusting for known mortality risk factors. METHODS: COVID-19 hospitalization data and deaths were obtained from the National Institute for Communicable Diseases (NICD). Generalized structured additive logistic regression model was used to assess spatial effects on COVID-19 in-hospital deaths adjusting for demographic and clinical covariates. Continuous covariates were modelled by assuming second-order random walk priors, while spatial autocorrelation was specified with Markov random field prior and fixed effects with vague priors respectively. The inference was fully Bayesian. RESULTS: The risk of COVID-19 in-hospital mortality increased with patient age, with admission to intensive care unit (ICU) (aOR = 4.16; 95% Credible Interval: 4.05-4.27), being on oxygen (aOR = 1.49; 95% Credible Interval: 1.46-1.51) and on invasive mechanical ventilation (aOR = 3.74; 95% Credible Interval: 3.61-3.87). Being admitted in a public hospital (aOR = 3.16; 95% Credible Interval: 3.10-3.21) was also significantly associated with mortality. Risk of in-hospital deaths increased in months following a surge in infections and dropped after months of successive low infections highlighting crest and troughs lagging the epidemic curve. After controlling for these factors, districts such as Vhembe, Capricorn and Mopani in Limpopo province, and Buffalo City, O.R. Tambo, Joe Gqabi and Chris Hani in Eastern Cape province remained with significantly higher odds of COVID-19 hospital deaths suggesting possible health systems challenges in those districts. CONCLUSION: The results show substantial COVID-19 in-hospital mortality variation across the 52 districts. Our analysis provides information that can be important for strengthening health policies and the public health system for the benefit of the whole South African population. Understanding differences in in-hospital COVID-19 mortality across space could guide interventions to achieve better health outcomes in affected districts.


Subject(s)
COVID-19 , Humans , Bayes Theorem , Hospitalization , Hospitals , SARS-CoV-2 , South Africa/epidemiology
2.
Clin Infect Dis ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2297119

ABSTRACT

BACKGROUND: This study compared admission incidence risk across waves, and the risk of mortality in the Omicron BA.4/BA.5 wave, to the Omicron BA.1/BA.2 and Delta waves. METHODS: Data from South Africa's national hospital surveillance system, SARS-CoV-2 case linelist and Electronic Vaccine Data System were linked and analysed. Wave periods were defined when the country passed a weekly incidence of 30 cases/100,000 people. In-hospital case fatality ratios (CFR) in the Delta, Omicron BA.1/BA.2 and Omicron BA.4/BA.5 wave periods were compared by post-imputation random effect multivariable logistic regression models. RESULTS: The CFR was 25.9% (N = 37,538/144,778), 10.9% (N = 6,123/56,384) and 8.2% (N = 1,212/14,879) in the Delta, Omicron BA.1/BA.2, and Omicron BA.4/BA.5 waves respectively. After adjusting for age, sex, race, comorbidities, health sector and province, compared to the Omicron BA.4/BA.5 wave, patients had higher risk of mortality in the Omicron BA.1/BA.2 wave (adjusted odds ratio [aOR] 1.3; 95% confidence interval [CI] 1.2-1.4) and Delta (aOR 3.0; 95% CI 2.8-3.2) wave. Being partially vaccinated (aOR 0.9, CI 0.9-0.9), fully vaccinated (aOR 0.6, CI 0.6-0.7) and boosted (aOR 0.4, CI 0.4-0.5); and prior laboratory-confirmed infection (aOR 0.4, CI 0.3-0.4) were associated with reduced risks of mortality. CONCLUSION: Overall, admission incidence risk and in-hospital mortality, which had increased progressively in South Africa's first three waves, decreased in the fourth Omicron BA.1/BA.2 wave and declined even further in the fifth Omicron BA.4/BA.5 wave. Mortality risk was lower in those with natural infection and vaccination, declining further as the number of vaccine doses increased.

3.
Viruses ; 15(3)2023 02 21.
Article in English | MEDLINE | ID: covidwho-2270244

ABSTRACT

We conducted an epidemiologic survey to determine the seroprevalence of SARS-CoV-2 anti-nucleocapsid (anti-N) and anti-spike (anti-S) protein IgG from 1 March to 11 April 2022 after the BA.1-dominant wave had subsided in South Africa and prior to another wave dominated by the BA.4 and BA.5 (BA.4/BA.5) sub-lineages. We also analysed epidemiologic trends in Gauteng Province for cases, hospitalizations, recorded deaths, and excess deaths were evaluated from the inception of the pandemic through 17 November 2022. Despite only 26.7% (1995/7470) of individuals having received a COVID-19 vaccine, the overall seropositivity for SARS-CoV-2 was 90.9% (95% confidence interval (CI), 90.2 to 91.5) at the end of the BA.1 wave, and 64% (95% CI, 61.8 to 65.9) of individuals were infected during the BA.1-dominant wave. The SARS-CoV-2 infection fatality risk was 16.5-22.3 times lower in the BA.1-dominant wave compared with the pre-BA.1 waves for recorded deaths (0.02% vs. 0.33%) and estimated excess mortality (0.03% vs. 0.67%). Although there are ongoing cases of COVID-19 infections, hospitalization and death, there has not been any meaningful resurgence of COVID-19 since the BA.1-dominant wave despite only 37.8% coverage by at least a single dose of COVID-19 vaccine in Gauteng, South Africa.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19 Vaccines , South Africa/epidemiology , Incidence , Seroepidemiologic Studies , SARS-CoV-2
4.
Int J Infect Dis ; 128: 102-111, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2241792

ABSTRACT

OBJECTIVES: The study aimed to describe the prevalence of and risk factors for post-COVID-19 condition (PCC). METHODS: This was a prospective, longitudinal observational cohort study. Hospitalized and nonhospitalized adults were randomly selected to undergo telephone assessment at 1, 3, and 6 months. Participants were assessed using a standardized questionnaire for the evaluation of symptoms and health-related quality of life. We used negative binomial regression models to determine factors associated with the presence of ≥1 symptoms at 6 months. RESULTS: A total of 46.7% of hospitalized and 18.5% of nonhospitalized participants experienced ≥1 symptoms at 6 months (P ≤0.001). Among hospitalized people living with HIV, 40.4% had persistent symptoms compared with 47.1% among participants without HIV (P = 0.108). The risk factors for PCC included older age, female sex, non-Black race, presence of a comorbidity, greater number of acute COVID-19 symptoms, hospitalization/COVID-19 severity, and wave period (lower risk of persistent symptoms for the Omicron compared with the Beta wave). There were no associations between self-reported vaccination status with persistent symptoms. CONCLUSION: The study revealed a high prevalence of persistent symptoms among South African participants at 6 months but decreased risk for PCC among participants infected during the Omicron BA.1 wave. These findings have serious implications for countries with resource-constrained health care systems.


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , Female , Cohort Studies , South Africa , Prospective Studies , Follow-Up Studies , Quality of Life
5.
Nat Commun ; 13(1): 5860, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-2050384

ABSTRACT

Omicron lineages BA.4 and BA.5 drove a fifth wave of COVID-19 cases in South Africa. Here, we use the presence/absence of the S-gene target as a proxy for SARS-CoV-2 variant/lineage for infections diagnosed using the TaqPath PCR assay between 1 October 2021 and 26 April 2022. We link national COVID-19 individual-level data including case, laboratory test and hospitalisation data. We assess severity using multivariable logistic regression comparing the risk of hospitalisation and risk of severe disease, once hospitalised, for Delta, BA.1, BA.2 and BA.4/BA.5 infections. After controlling for factors associated with hospitalisation and severe outcome respectively, BA.4/BA.5-infected individuals had a similar odds of hospitalisation (aOR 1.24, 95% CI 0.98-1.55) and severe outcome (aOR 0.72, 95% CI 0.41-1.26) compared to BA.1-infected individuals. Newly emerged Omicron lineages BA.4/BA.5 showed similar severity to the BA.1 lineage and continued to show reduced clinical severity compared to the Delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology
6.
Lancet Microbe ; 3(10): e753-e761, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2004702

ABSTRACT

BACKGROUND: Assessment of disease severity associated with a novel pathogen or variant provides crucial information needed by public health agencies and governments to develop appropriate responses. The SARS-CoV-2 omicron variant of concern (VOC) spread rapidly through populations worldwide before robust epidemiological and laboratory data were available to investigate its relative severity. Here we develop a set of methods that make use of non-linked, aggregate data to promptly estimate the severity of a novel variant, compare its characteristics with those of previous VOCs, and inform data-driven public health responses. METHODS: Using daily population-level surveillance data from the National Institute for Communicable Diseases in South Africa (March 2, 2020, to Jan 28, 2022), we determined lag intervals most consistent with time from case ascertainment to hospital admission and within-hospital death through optimisation of the distance correlation coefficient in a time series analysis. We then used these intervals to estimate and compare age-stratified case-hospitalisation and case-fatality ratios across the four epidemic waves that South Africa has faced, each dominated by a different variant. FINDINGS: A total of 3 569 621 cases, 494 186 hospitalisations, and 99 954 deaths attributable to COVID-19 were included in the analyses. We found that lag intervals and disease severity were dependent on age and variant. At an aggregate level, fluctuations in cases were generally followed by a similar trend in hospitalisations within 7 days and deaths within 15 days. We noted a marked reduction in disease severity throughout the omicron period relative to previous waves (age-standardised case-fatality ratios were consistently reduced by >50%), most substantial for age strata with individuals 50 years or older. INTERPRETATION: This population-level time series analysis method, which calculates an optimal lag interval that is then used to inform the numerator of severity metrics including the case-hospitalisation and case-fatality ratio, provides useful and timely estimates of the relative effects of novel SARS-CoV-2 VOCs, especially for application in settings where resources are limited. FUNDING: National Institute for Communicable Diseases of South Africa, South African National Government.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , South Africa/epidemiology , Time Factors
7.
Lancet Glob Health ; 10(7): e961-e969, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852287

ABSTRACT

BACKGROUND: Up to the end of January, 2022, South Africa has had four recognisable COVID-19 pandemic waves, each predominantly dominated by one variant of concern: the ancestral strain with an Asp614Gly mutation during the first wave, the beta variant (B.1.351) during the second wave, the delta variant (B.1.617.2) during the third wave, and lastly, the omicron variant (B.1.1.529) during the fourth wave. We aimed to assess the clinical disease severity of patients admitted to hospital with SARS-CoV-2 infection during the omicron wave and compare the findings with those of the preceding three pandemic waves in South Africa. METHODS: We defined the start and end of each pandemic wave as the crossing of the threshold of weekly incidence of 30 laboratory-confirmed SARS-CoV-2 cases per 100 000 population. Hospital admission data were collected through an active national COVID-19-specific surveillance programme. We compared disease severity across waves by post-imputation random effect multivariable logistic regression models. Severe disease was defined as one or more of the following: acute respiratory distress, receipt of supplemental oxygen or mechanical ventilation, admission to intensive care, or death. FINDINGS: We analysed 335 219 laboratory-confirmed SARS-CoV-2 hospital admissions with a known outcome, constituting 10·4% of 3 216 179 cases recorded during the four waves. During the omicron wave, 52 038 (8·3%) of 629 617 cases were admitted to hospital, compared with 71 411 (12·9%) of 553 530 in the Asp614Gly wave, 91 843 (12·6%) of 726 772 in the beta wave, and 131 083 (10·0%) of 1 306 260 in the delta wave (p<0·0001). During the omicron wave, 15 421 (33·6%) of 45 927 patients admitted to hospital had severe disease, compared with 36 837 (52·3%) of 70 424 in the Asp614Gly wave, 57 247 (63·4%) of 90 310 in the beta wave, and 81 040 (63·0%) of 128 558 in the delta wave (p<0·0001). The in-hospital case-fatality ratio during the omicron wave was 10·7%, compared with 21·5% during the Asp614Gly wave, 28·8% during the beta wave, and 26·4% during the delta wave (p<0·0001). Compared with those admitted to hospital during the omicron wave, patients admitted during the other three waves had more severe clinical presentations (adjusted odds ratio 2·07 [95% CI 2·01-2·13] in the Asp614Gly wave, 3·59 [3·49-3·70] in the beta wave, and 3·47 [3·38-3·57] in the delta wave). INTERPRETATION: The trend of increasing cases and admissions across South Africa's first three waves shifted in the omicron wave, with a higher and quicker peak but fewer patients admitted to hospital, less clinically severe illness, and a lower case-fatality ratio compared with the preceding three waves. Omicron marked a change in the SARS-CoV-2 epidemic curve, clinical profile, and deaths in South Africa. Extrapolations to other populations should factor in differing vaccination and previous infection levels. FUNDING: National Institute for Communicable Diseases.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/epidemiology , Hospitals , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , South Africa/epidemiology
8.
N Engl J Med ; 386(14): 1314-1326, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1703992

ABSTRACT

BACKGROUND: The B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified on November 25, 2021, in Gauteng province, South Africa. Data regarding the seroprevalence of SARS-CoV-2 IgG in Gauteng before the fourth wave of coronavirus disease 2019 (Covid-19), in which the omicron variant was dominant, are needed. METHODS: We conducted a seroepidemiologic survey from October 22 to December 9, 2021, in Gauteng to determine the seroprevalence of SARS-CoV-2 IgG. Households included in a previous seroepidemiologic survey (conducted from November 2020 to January 2021) were contacted; to account for changes in the survey population, there was a 10% increase in the households contacted, with the use of the same sampling framework. Dried-blood-spot samples were tested for IgG against SARS-CoV-2 spike protein and nucleocapsid protein with the use of quantitative assays. We also evaluated Covid-19 epidemiologic trends in Gauteng, including cases, hospitalizations, recorded deaths, and excess deaths from the start of the pandemic through January 12, 2022. RESULTS: Samples were obtained from 7010 participants, of whom 1319 (18.8%) had received a Covid-19 vaccine. The seroprevalence of SARS-CoV-2 IgG ranged from 56.2% (95% confidence interval [CI], 52.6 to 59.7) among children younger than 12 years of age to 79.7% (95% CI, 77.6 to 81.5) among adults older than 50 years of age. Vaccinated participants were more likely to be seropositive for SARS-CoV-2 than unvaccinated participants (93.1% vs. 68.4%). Epidemiologic data showed that the incidence of SARS-CoV-2 infection increased and subsequently declined more rapidly during the fourth wave than it had during the three previous waves. The incidence of infection was decoupled from the incidences of hospitalization, recorded death, and excess death during the fourth wave, as compared with the proportions seen during previous waves. CONCLUSIONS: Widespread underlying SARS-CoV-2 seropositivity was observed in Gauteng before the omicron-dominant wave of Covid-19. Epidemiologic data showed a decoupling of hospitalizations and deaths from infections while omicron was circulating. (Funded by the Bill and Melinda Gates Foundation.).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines , Child , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Middle Aged , Public Health Surveillance , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Seroepidemiologic Studies , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/immunology , Young Adult
9.
Lancet ; 399(10323): 437-446, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1641746

ABSTRACT

BACKGROUND: The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. METHODS: We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021. FINDINGS: From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1-0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3-1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2-0·5), after controlling for factors associated with disease severity. INTERPRETATION: Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity. FUNDING: The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.


Subject(s)
COVID-19/physiopathology , Hospitalization/statistics & numerical data , SARS-CoV-2/genetics , Severity of Illness Index , Adolescent , Adult , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Genome, Viral , Humans , Information Storage and Retrieval , Logistic Models , Male , Middle Aged , Multivariate Analysis , Odds Ratio , South Africa/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL